Petrographic Characterization of Khadsaliya Lignites, Bhavnagar District, Gujarat

O. P. THAKUR, ALPANA SINGH and B. D. SINGH
Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow - 226 007
Email: singhbd.bsip@gmail.com

Abstract: The petrological studies on Khadsaliya lignites from Bhavnagar district have been carried out for their microconstituent’s characterization. Quantitative estimation of macerals reveal, due to high amount of macerals of huminite group, that this lignite deposits has formed from forest dominated vegetation in a fast subsiding basin, experiencing almost uniform environmental conditions, with slight intermittent fluctuations. The rank based on R_{\text{max}} \% values indicates that lignites are less mature and have not reached the sub-bituminous stage of coalification as those of the lignites from Panandhro (Gujarat) and Neyveli (Tamil Nadu) fields. High pyrite content in the Khadsaliya lignite makes it not much suitable for combustion purpose.

Keywords: Maceral, Maturation, Palaeodeposition, Khadsaliya lignite, Cenozoic, Gujarat.

INTRODUCTION

The earliest known lignite deposits in Gujarat were found in Kutch district. The occurrence of lignite around Khadsaliya village of Bhavnagar district first came into light in 1980. With the further investigations and exploration taken up by the Gujarat State Government, extensive drilling programme from 1987 revealed the exploitable reserves of lignite in Lakhanka-Khadsaliya Block, about 20-30 km from SSE of Bhavnagar city (Fig. 1). The lignite in the area is presently being mined by Gujarat Mineral Development Corporation (GMDC) and Gujarat Heavy Chemicals Limited (GHCL).

Lignites are evaluated for various purposes utilizing different parameters. Petrographic characterization of lignites has importance in academic and technological pursuits. Extensive and intensive palaeofloral (Saxena, 1979; Lakhanpal and Guleria, 1983; Kar, 1985; Guleria, 1991) and organic petrological (Misra, 1992; Misra and Navale, 1992, Singh and Singh, 2003, 2005) investigations on lignites from various mines of Gujarat have helped to understand the then existed vegetation and environmental/climatic conditions prevailed at the time of lignite formation. The petrological results helped to interpret the utilization potential of these lignites, besides many other rank/maturation related properties (Misra and Navale, 1992; Singh, 2002; Singh and Singh, 2003). The present paper provides detailed information on organic petrographic characterization (nature, maceral composition and maturation) of Khadsaliya lignites and an interpretation for the palaeodepositional conditions and utilization prospects.

GENERAL GEOLOGY AND LIGNITE DEPOSITS

Geology of the area is part of the Saurashtra peninsula, bounded by sea except on NE where it is flanked by alluvial plains. The peninsula is bound by N–S trending Cambay Basin fault in the east, the extension of Narmada geofracture (a fault system) in the south, E–W rtending gulf of Kutch fault in the north, and the major WNW–ESE fault (an extension of the West Coast fault system in the Arabian Sea) in the west. As per Biswas (1980, 1987) and Merh (1995), the Aravalli trend in the SW portion of the region splays out into three components. The main NE–SW trend continues across the Cambay Graben into Saurashtra as a southwesterly plunging arch. Biswas and Deshpande (1983) consider the Saurashtra region as a horst surrounded by rift graben and demonstrate that central, southern and northern Saurashtra exhibit distinct volcano-tectonic characteristics. On the eastern side of Saurashtra, a sharp contact of alluvium with basalt is observed in the N–S direction, extending from the west of Nal Sarovar to Bhavnagar.

Saurashtra peninsula is about 65% covered by basaltic lava flows (Deccan Trap), overlying the Mesozoic sediments in north and underlying the Tertiary-Quaternary sediments at coastal fringe. The Deccan Trap provides the basement for the deposition of Tertiary sediments that are exposed at
This green to greenish-grey clay formation, overlying the Supratrappean (Lower Eocene) and Deccan Traps (Cretaceous-Eocene) holds the lignite deposits together with carbonaceous clay. The basin extending in a length of about 12 km opens up towards north with a general slope towards sea. It extends from Lakhanka to Rampur-Navades-Ratanpur and beyond in NS direction up to Bhumbhali and Thordi, the width is about 1-3 km in EW. Lignite seams unconformably lie on the weathered trap on lithomargic clay. They become deeper towards east to northeast and diminish towards sea. The seams show an average gradient of 5-10° dip towards center of the basin. In Khadsaliya-Lakhanka Block, lignite is found at a depth of 11.99 m to 195.81 m with the thickness of two seams varying between 0.20 to 11.05 m (source GHCL report). The lignites are brownish black, fine grained and amorphous and tend to develop cracks when exposed to air. The lignite seams contain specks of resin, pyrite and iron nodules in abundance that can be picked by hands.

MATERIAL AND METHOD

Total 10 lignite samples representing top and bottom seams, collected vertically in ascending order– 2 from top portion of seam II (bottom seam, about 1.0 m exposed for mining), and 8 from seam I (the main/top seam- about 4 m thick at collection site), are utilized for the petrographic studies (Fig. 2). The two seams exposed in Khadsaliya mine are separated by about one meter thick carbonaceous clay parting.

The particulate lignite pellets were prepared by embedding ±1-2 mm size grain particles in a mixture of epoxy resin and hardener in a ratio of 5:1. The hardened pellets were ground and polished successively on finer grades of silicon cloth and with polishing alumina respectively and used for the study as per the specifications of ICCP (1971, 1975). The reflectance were measured on huminite constituents (preferably ulminite) in monochromatic light on Leica DM4500P microscope using Sapphire (0.594) as a reflectance standard (along with the standards: Yttrium-Aluminium-Garnet (0.904) and Gadolinium-Gallium-Garnet (1.725)), immersion oil (refractive index 1.518) and 50x objective lens along with a pair of 10x oculars. Microscopephotometery System (PMT III) and Software MSP 200 is used for the reflectance measurements, calculations and data collection. The desired measurements were equally distributed on entire pellet. The maceral analyses under incident light in reflected and fluorescent (blue light excitation) modes were carried out on the same microscope. Software tool- Leica applications...
The huminite is represented by almost all the macerals incorporated in this group. Structured telohuminite (textinite + ulminite) is dominant in the bottom seam (17.5-27.2 vol. %, av. 22.3 vol. %) as compared to the top seam (6.8-32.0 vol. %, av. 18.7 vol. %), followed by detrohuminite (av. 13.8 vol. %) and gelohuminite (av. 2.5 vol. %). Detrohuminite consisting detrital macerals (attrinite + densinite) predominates in the top seam (24.3-69.3 vol. %, av. 56.4 vol. %), followed by telohuminite (av. 18.7 vol. %) and gelohuminite (2.7 vol. %). Ulminite normally dominates over textinite in both the seams.

Liptinite Group: The group is mainly represented by sporinite (spores-pollen), cutinite (cuticles) and resinite (resins/waxes/oil, etc.). The macerals are recorded in higher concentration in the bottom seam (10.8-14.0 vol. %, av. 12.4 vol. %) as compared to the top seam (2.4-5.8 vol. %, av. 3.6 vol. %).

Inertinite Group: Semifusinite, fusinite, inertodetrinite and funginite represent the group, though not recorded in all the samples individually. The group is fairly represented in top seam (0.2-11.6 vol. %, av. 4.0 vol. %), however its concentration is very less in the bottom seam (0.5-0.6 vol. %, av. 0.5 vol. %). Amongst all the inertinite macerals, funginite is the most common maceral (0.3-3.6 vol. %) in both the seams, followed by pyrofusinite (also as fusinite needles, i.e. inertodetrinite).

Mineral Inclusions

The minerals associated with the Khadsaliya lignites are mainly represented by clay, quartz, sulphide and carbonate. The most common among these are pyrite and clay minerals. The minerals are introduced during the early stage of lignite formation, i.e. are of early diagenetic or syngenetic type. Clay minerals are intimately associated with the macerals, while pyrite is recorded as fine crystalline or concretionary form, as individual euhedral crystals, as massive and in frambooidal form as well (Plate 1: 1-2). Carbonate mineral (siderite) is rare and recorded in concretionary form.

The bottom seam contains higher frequency of associated mineral matter (45.7-51.0 vol. %, av. 48.3 vol. %) as compared to the top seam (3.6-26.2 vol. %, av. 14.7 vol. %). On the contrary, pyrite is present in both the seams in fairly well amount (bottom seam II: av. 1.6 vol. %, top seam I: av. 4.5 vol. %), however higher (>5-12 vol. %) in some samples.

Under Fluorescence Mode

As observed under blue light excitation, the H2-rich liptinite group is represented by sporinite, resinite, cutinite, suberinite (suberin), and liptodetrinite (detritus). Liptodetrinite (13.2-23.6 vol. %; avgs. 29.6 vol. % in seam (bottom). The huminite is represented by almost all the macerals incorporated in this group. Structured telohuminite (textinite + ulminite) is dominant in the bottom seam (17.5-27.2 vol. %, av. 22.3 vol. %) as compared to the top seam (6.8-32.0 vol. %, av. 18.7 vol. %), followed by detrohuminite (av. 13.8 vol. %) and gelohuminite (av. 2.5 vol. %). Detrohuminite consisting detrital macerals (attrinite + densinite) predominates in the top seam (24.3-69.3 vol. %, av. 56.4 vol. %), followed by telohuminite (av. 18.7 vol. %) and gelohuminite (2.7 vol. %). Ulminite normally dominates over textinite in both the seams.

Liptinite Group: The group is mainly represented by sporinite (spores-pollen), cutinite (cuticles) and resinite (resins/waxes/oil, etc.). The macerals are recorded in higher concentration in the bottom seam (10.8-14.0 vol. %, av. 12.4 vol. %) as compared to the top seam (2.4-5.8 vol. %, av. 3.6 vol. %).

Inertinite Group: Semifusinite, fusinite, inertodetrinite and funginite represent the group, though not recorded in all the samples individually. The group is fairly represented in top seam (0.2-11.6 vol. %, av. 4.0 vol. %), however its concentration is very less in the bottom seam (0.5-0.6 vol. %, av. 0.5 vol. %). Amongst all the inertinite macerals, funginite is the most common maceral (0.3-3.6 vol. %) in both the seams, followed by pyrofusinite (also as fusinite needles, i.e. inertodetrinite).

Mineral Inclusions

The minerals associated with the Khadsaliya lignites are mainly represented by clay, quartz, sulphide and carbonate. The most common among these are pyrite and clay minerals. The minerals are introduced during the early stage of lignite formation, i.e. are of early diagenetic or syngenetic type. Clay minerals are intimately associated with the macerals, while pyrite is recorded as fine crystalline or concretionary form, as individual euhedral crystals, as massive and in frambooidal form as well (Plate 1: 1-2). Carbonate mineral (siderite) is rare and recorded in concretionary form.

The bottom seam contains higher frequency of associated mineral matter (45.7-51.0 vol. %, av. 48.3 vol. %) as compared to the top seam (3.6-26.2 vol. %, av. 14.7 vol. %). On the contrary, pyrite is present in both the seams in fairly well amount (bottom seam II: av. 1.6 vol. %, top seam I: av. 4.5 vol. %), however higher (>5-12 vol. %) in some samples.

Under Fluorescence Mode

As observed under blue light excitation, the H2-rich liptinite group is represented by sporinite, resinite, cutinite, suberinite (suberin), and liptodetrinite (detritus). Liptodetrinite (13.2-23.6 vol. %; avgs. 29.6 vol. % in seam
I, 14.3 vol. % in seam II), followed by resinite (2.0-8.8 vol. %; avgs. 4.0 vol. % in seam I, 2.5 vol. % in seam II) are the chief macerals in almost all the samples studied. Resinite is observed as globular/ rounded isolated bodies and as cell-fillings. The discrete bodies vary in colour from yellow, yellowish-green to brown to reddish-brown (Plate 1: 5-6). Sporinite (Plate 1: 3) and cutinite are also well represented in both the lignite seams, however the former is in higher proportion in seam II (6.0-9.0 vol. %, av. 7.4 vol. %) as compared to seam I (2.4-7.2 vol. %, av. 3.6 vol. %). The frequency of the cutinite ranges between 0.7 and 3.6 vol. %, without much difference in individual sample. These are mostly of tenuicutinite type, i.e. thin walled (Plate 1: 4).

Table 2. Maceral composition (vol. %) and rank (R_{max}%) of Khadsaliya lignites as assessed under normal incident light and under blue light excitation

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Huminite</td>
<td>42.9</td>
<td>34.5</td>
<td>38.7</td>
<td>77.4</td>
<td>77.2</td>
<td>75.8</td>
<td>85.1</td>
<td>70.0</td>
<td>75.6</td>
<td>85.2</td>
<td>75.6</td>
<td>77.7</td>
</tr>
<tr>
<td></td>
<td>Liptinite</td>
<td>(79.0)</td>
<td>(70.4)</td>
<td>(74.7)</td>
<td>(95.3)</td>
<td>(92.1)</td>
<td>(95.2)</td>
<td>(93.8)</td>
<td>(94.8)</td>
<td>(88.3)</td>
<td>(88.4)</td>
<td>(82.5)</td>
<td>(91.3)</td>
</tr>
<tr>
<td></td>
<td>Textinite</td>
<td>0.3</td>
<td>0.5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>1.2</td>
<td>1.3</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>Ulmine</td>
<td>26.9</td>
<td>17.0</td>
<td>10.8</td>
<td>20.8</td>
<td>30.8</td>
<td>11.3</td>
<td>39.9</td>
<td>6.8</td>
<td>13.6</td>
<td>7.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Humodetrinite</td>
<td>27.2</td>
<td>17.5</td>
<td>22.3</td>
<td>11.4</td>
<td>21.4</td>
<td>32.0</td>
<td>12.6</td>
<td>41.5</td>
<td>6.8</td>
<td>15.2</td>
<td>8.4</td>
<td>18.7</td>
</tr>
<tr>
<td></td>
<td>Attrinite</td>
<td>4.6</td>
<td>11.0</td>
<td>4.6</td>
<td>11.0</td>
<td>14.0</td>
<td>16.4</td>
<td>53.3</td>
<td>11.5</td>
<td>40.0</td>
<td>42.4</td>
<td>46.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Densinite</td>
<td>8.0</td>
<td>4.0</td>
<td>8.0</td>
<td>53.6</td>
<td>39.2</td>
<td>25.6</td>
<td>16.0</td>
<td>12.8</td>
<td>26.8</td>
<td>25.2</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Huminite fluorescing)</td>
<td>12.6</td>
<td>15.0</td>
<td>13.8</td>
<td>64.6</td>
<td>53.2</td>
<td>42.0</td>
<td>69.3</td>
<td>24.3</td>
<td>66.8</td>
<td>67.6</td>
<td>63.2</td>
<td>56.4</td>
</tr>
<tr>
<td></td>
<td>(Sporinite)</td>
<td>1.2</td>
<td>2.0</td>
<td>1.2</td>
<td>0.8</td>
<td>2.2</td>
<td>1.6</td>
<td>3.2</td>
<td>1.6</td>
<td>2.0</td>
<td>2.4</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Gelinite)</td>
<td>1.9</td>
<td>-</td>
<td>-</td>
<td>0.6</td>
<td>0.4</td>
<td>0.2</td>
<td>2.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Humocollinite)</td>
<td>3.1</td>
<td>2.0</td>
<td>2.55</td>
<td>1.4</td>
<td>2.6</td>
<td>1.8</td>
<td>3.2</td>
<td>4.2</td>
<td>2.0</td>
<td>2.4</td>
<td>4.0</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>(Liptinite)</td>
<td>10.8</td>
<td>14.0</td>
<td>12.4</td>
<td>3.2</td>
<td>5.8</td>
<td>3.6</td>
<td>2.5</td>
<td>3.8</td>
<td>2.4</td>
<td>3.2</td>
<td>4.4</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>(Liptinite+Huminite)</td>
<td>10.2</td>
<td>12.5</td>
<td>3.2</td>
<td>5.8</td>
<td>3.6</td>
<td>2.0</td>
<td>3.5</td>
<td>1.2</td>
<td>-</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Resinite)</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
<td>0.8</td>
<td>0.2</td>
<td>3.1</td>
<td>-</td>
<td>7.6</td>
<td>8.0</td>
<td>11.6</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>(Inertinite)</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
<td>0.8</td>
<td>0.2</td>
<td>3.1</td>
<td>-</td>
<td>7.6</td>
<td>8.0</td>
<td>11.6</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>(Semifusinite)</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.8</td>
<td>-</td>
<td>2.0</td>
<td>3.6</td>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Fusinite)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Funginite)</td>
<td>0.3</td>
<td>0.5</td>
<td>0.6</td>
<td>0.8</td>
<td>0.8</td>
<td>1.0</td>
<td>-</td>
<td>1.2</td>
<td>2.8</td>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Inertodetrinite)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.3</td>
<td>-</td>
<td>4.4</td>
<td>1.6</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Mineral matter)</td>
<td>45.7</td>
<td>51.0</td>
<td>48.3</td>
<td>18.8</td>
<td>16.2</td>
<td>20.4</td>
<td>9.3</td>
<td>26.2</td>
<td>14.4</td>
<td>3.6</td>
<td>8.4</td>
<td>14.7</td>
</tr>
<tr>
<td></td>
<td>(Pyrite)</td>
<td>2.2</td>
<td>1.0</td>
<td>2.2</td>
<td>3.2</td>
<td>3.6</td>
<td>8.4</td>
<td>4.5</td>
<td>12.1</td>
<td>2.4</td>
<td>1.6</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R_{max}%</td>
<td>0.31</td>
<td>0.29</td>
<td>0.30</td>
<td>0.29</td>
<td>0.27</td>
<td>0.31</td>
<td>0.29</td>
<td>0.28</td>
<td>0.28</td>
<td>0.26</td>
<td>0.28</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Maceral composition (mmf. %) of Khadsaliya lignites as assessed under blue light excitation

<table>
<thead>
<tr>
<th>Macerals</th>
<th>Huminite fluorescing</th>
<th>Sporinite</th>
<th>Cutinite</th>
<th>Suberinite</th>
<th>Resinite</th>
<th>Liptodetrinite</th>
<th>Liptinite (total)</th>
<th>Total fluorescing (huminite+liptinite)</th>
<th>Non-fluorescing (huminite+inertinite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huminite</td>
<td>6.5 (9.3) (7.9)</td>
<td>48.4 (36.0)</td>
<td>39.2 (26.0)</td>
<td>19.2 (24.8)</td>
<td>49.2 (23.6)</td>
<td></td>
<td>(25.0) (26.7) (25.8)</td>
<td>(31.5) (36.0) (33.7)</td>
<td>(68.5) (64.0) (66.3)</td>
</tr>
<tr>
<td>Liptinite</td>
<td>(9.9) (7.0) (7.2)</td>
<td>(7.4) (6.2)</td>
<td>(3.6) (2.8)</td>
<td>(3.6) (2.8)</td>
<td>(3.6) (2.8)</td>
<td>(14.0) (14.7) (16.0)</td>
<td>(25.0) (26.7) (25.8)</td>
<td>(31.5) (36.0) (33.7)</td>
<td>(68.5) (64.0) (66.3)</td>
</tr>
</tbody>
</table>

Figures in parenthesis are on mineral matter-free basis.

I, 14.3 vol. % in seam II), followed by resinite (2.0-8.8 vol. %; avgs. 4.0 vol. % in seam I, 2.5 vol. % in seam II) are the chief macerals in almost all the samples studied. Resinite is observed as globular/ rounded isolated bodies and as cell-fillings. The discrete bodies vary in colour from yellow, yellowish-green to brown to reddish-brown (Plate 1: 5-6). Sporinite (Plate 1: 3) and cutinite are also well represented in both the lignite seams, however the former is in higher proportion in seam II (6.0-9.0 vol. %, av. 7.6 vol. %) as compared to seam I (2.4-7.2 vol. %, av. 3.6 vol. %). The frequency of the cutinite ranges between 0.7 and 3.6 vol. %, without much difference in individual sample. These are mostly of tenuicutinite type, i.e. thin walled (Plate 1: 4).

Total liptinite macerals under blue light excitation ranges between 25.0 and 26.7 vol. % (av. 25.8 vol. %) in bottom (II) seam and between 23.2 and 37.2 vol. % (av. 29.2 vol. %) in top seam (I). In addition, brown to dark brown fluorescing or perhydrous huminite is recorded in high percentage in the top seam (19.2-49.2 vol. %, av. 33.3 vol. %) and in relatively lower frequency in the bottom seam (6.5-9.3 vol. %, av. 7.9 vol. %). The amount of total fluorescing macerals (liptinite + perhydrous huminite) in
Plate 1. 1-2 - Framboidal pyrite associated with huminite (under normal incident light). 3 - Sporinite (sculptured pollen). 4 - Cutinite. 5 - Resinite bodies (R-Resinite). 6 - Pyritic degradation of resinite (P - Pyrite) (3-6: blue light excitation using oil immersion).

seam I (42.4-75.6 vol. %, av. 62.5 vol. %) are almost double the amount in seam II (31.5-36.0 vol. %, av. 33.7 vol. %).

RANK OF LIGNITES

The reflectance measurements data on both the lignite seams are listed in Table 2. The calculated mean maximum huminite reflectance values ($R_{o \text{ max}}$ % values) for seam I (top) range between 0.26 to 0.31% with the average $R_{o \text{ max}}$ value of 0.28%. The values do not reveal any specific increasing or decreasing trend with depth of the seam. The seam II (bottom) shows an average $R_{o \text{ max}}$ value 0.30%, with the individual readings of two samples as 0.31% and 0.29%. The rank (maturity) values indicate that the studied lignites as per the German Standard (DIN) and American Standard for Testing Materials (ASTM) classification (in Stach et al. 1982) are in brown coal and lignitic stage, respectively.

DISCUSSION AND CONCLUSIONS

The accumulated vegetal matter undergoes physical and chemical changes under the influence of temperature and
pressure induced biological and geological processes, in order to convert into lignite/coal (Stach et al. 1982; Taylor et al. 1998). The organic microconstituents or macerals, thus formed are the basic units of lignite/coal that provide all the information about their origin (basin conditions, swamp water conditions, environment of deposition, climate, type of vegetation etc). Depending on the morphological and chemical properties these macerals are grouped into three main groups, viz. oxygen-rich huminite/vitrinite derived from woody tissue, hydrogen-rich liptinite originated from lipid rich organic matter and carbon-rich inertinite originated from woody tissue, respectively. The presence of concretionary siderite (and also Fe nodules in the seams) that forms in highly reducing conditions and faster rate of subsidence. Abundance of iron nodules (pyrite/siderite) that form in highly reducing environmental conditions also strengthens the conclusions drawn from the petrographic studies. A detailed study on Fe nodules may further add to the information on their mode of formation.

The maturation determination or rank \(R_{	ext{max}} \) (0.26 %–0.31 %) indicates that the lignites have reached up to brown coal (German Standard) or lignite stage (ASTM). The normal increase in rank (though slightly increased in the bottom seam) with depth following the Hils’ Law has been observed. When compared with the lignites of Panandhro field (Kutch Basin; Singh, 2002), Gujarat and Neyveli field (Cauvery Basin; Singh and Singh, 1994), Tamil Nadu, the studied lignites from Saurashtra area have not reached the sub-bituminous stage and are relatively of lower rank or are less mature. The reason may be assigned to faster rate of basin subsidence (experiencing short coking time) or lower geothermal gradient, because greater the influence of time, higher is the temperature (Welte, 1972; Hood et al. 1975).

Both the lignite seams of Khadsaliya appear to have been originated from wood-dominated forest vegetation in more or less similar conditions of swamp with only minor fluctuations in swamp water/environmental conditions. The basin initially experienced relatively higher reducing conditions and faster rate of subsidence. Abundance of iron nodules (pyrite/siderite) that form in highly reducing environmental conditions also strengthens the conclusions drawn from the petrographic studies. A detailed study on Fe nodules may further add to the information on their mode of formation. Large pyritic content (massive and nodules as well) makes the lignites unsuitable for the combustion, however clean lignites (at least free from Fe nodules) can be used when combined with good quality (low mineral/high rank) coals.

Acknowledgements: Authors thank Dr. N.C. Mehrotra, Director of the Institute for permission to publish the paper. Thanks are also due to officials of GMDC and GHCL for their kind support and cooperation during field visit.
References

(Received: 21 April 2009; Revised form accepted: 21 January 2010)